A MICHIGAN MATH MEET 2025

PowER ROUND

Names:

Team Name:

INSTRUCTIONS
1. Do not begin until instructed to by the proctor.
2. You will have 90 minutes to solve the problems during this round.

3. Your submission will be graded and assigned point values out of the total points possible
per problem. Your total score will be the sum of the points you receive for each problem.

4. Submissions will be graded on correctness as well as clarity of proof. A proof with signif-
icant progress towards a solution may receive more credit than a correct answer with no
justification.

5. You may use the result of a previous problem in the proof of a later problem,
even if you do not submit a correct solution to the referenced problem. However,
you may not use the result of a later problem in the proof of an earlier problem.

6. Please submit each part of each problem on a separate page. Write your team name, problem
number, and page number clearly at the top of each page.

7. No calculators or electronic devices are allowed.

8. All submitted work must be the work of your own team. You may collaborate with your
team members, but no one else.

9. When time is called, please put your pencil down and hold your paper in the air. Do not
continue to write. If you continue writing, your score may be disqualified.

10. Do not discuss the problems with anyone outside of your team until all papers have been
collected.

11. If you have a question or need to leave the room for any reason, please raise your hand
quietly.

12. Good luck!
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ACCEPTABLE ANSWERS

1. Solutions should be written in proof format. All answers, reasoning, and deductions must be explained
and justified, unless the problem explicitly asks for you to “compute”. Problems asking you to “show”,
“prove”, or “justify” require proof!

2. Proofs will be graded both on correctness as well as clarity of presentation.
3. Partial credit may be awarded for significant progress towards a solution.

4. Each problem must be written starting on a new, blank page. Two different problems should not be
written on the same page.

5. At the top right corner of each page, please clearly print your team name, problem number, and page
number.

6. Answers must be written legibly to receive credit. Ambiguous answers may be marked incorrect, even
if one of the possible interpretations is correct.
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THE DIAMOND DILEMMA

Introduction

Definitions and Notation: A one-player game consists of a set of states S = {s1,s2,5s3,...}. For each
state s, € S, there is a (potentially empty) set of states S,, C S\ {s,,} that the player can move to from s,.

We can represent a one-player game with a diagram that uses circles for states and arrows for the pos-
sible moves between them.

For example, a game with four states S = {s1, s2, s3, 54}, where the set of possible moves from s; is 51 = {s2},

the set of possible moves from sy is Sy = {s1, s3}, the set of possible moves from s3 is S3 = {}, and the set
of possible moves from s4 is Sy = {s1}, can be drawn as follows:

S1 82

olNC

From now on, we will use these diagrams instead of the set notation used above to describe one-player games.
We encourage you to do so as well in your proofs and examples.

We say that a state s, is terminal if S, = {}. In other words, there are no moves that can be made
from s,,. In the example above, s3 is terminal, but sy, s, and s4 are not terminal.

We now define three properties that a one-player game can have:
We say that a one-player game is terminating if there does not exist an infinite sequence of moves. The
example above is not terminating because the player may move infinitely back and forth between s; and ss.

However, the following example below is terminating because no matter where the player starts, they will
have to end up at either of the terminal states s; or s3 in a finite number of moves:

1/ N

S

Sa S3
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We say that a terminating one-player game is confluent if choosing a starting state determines a unique
terminal state that the player must end up reaching no matter what sequence of moves they choose. Note
that this does not mean that every starting state leads to the same terminal state. The second example
above is not confluent because starting from s, it is possible to reach either of the terminal states s; or ss.
However, the following example below is confluent because starting from s; or s4 forces the terminal state
to be s1, and starting from sy or s3 forces the terminal state to be s3.

S1 52

54 83

We say that a one-player game satisfies the diamond condition if whenever there is a state s such that there
exists a choice of two states s’ and s” that the player can move to from s, then there also exists a fourth
state s”’ such that there exists a (possibly empty) sequence of moves from s’ to s’ as well as a (possibly
empty) sequence of moves from s” to s/. The diamond condition is illustrated below, using a dotted arrow
to represent a sequence of moves.

Note that this property has to apply to every branch s, s’, s’/ within the one-player game in order for it to
satisfy the diamond condition. Also, note that the diamond condition does mot imply that every sequence
of moves starting from s’ or s” must eventually reach s”/. It only specifies that such a sequence of moves
exists.

Problem 1. The Diamond Lemma states that a terminating one-player game is confluent if and only if it
satisfies the diamond condition. In order to build intuition for this lemma, we will first ask you to provide
examples of one-player games.

(a) (1 Point) Give an example of a one-player game with exactly 6 states that is terminating, confluent,
and satisfies the diamond condition. Briefly justify each property.
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(b) (1 Point) Give an example of a one-player game with exactly 6 states that is terminating but is neither
confluent nor satisfies the diamond condition. Briefly justify each property.

MICHIGAN MATH MEET 2025

(¢) (2 Points) Give an example of a one-player game with an infinite number of states that is terminating,
confluent, and satisfies the diamond condition. Briefly justify each property.

Solution:

(a) Teams were given one point if they drew or described a one-player-game with exactly 6 states that
was terminating, confluent, and followed the diamond condition, along with a brief explanation of
how their game satisfied each condition. The game did not need a state that transitioned to more

than one state to earn the point (envoking the diamond condition). Drawings with no transitions
were also considered correct. Consider the example:

(b) Teams were given one point if they drew or described a one-player-game with exactly 6 states
that was terminating, not confluent, and did not follow the diamond condition, along with a brief
explanation of how their game satisfied or did not satisfy each condition. Consider this example:

()

Most teams that did not earn this point drew one-player-games that were confluent.

(c) Teams were given 2 points if they drew or described a one-player-game with an infinite number
states that was terminating, confluent, and followed the diamond condition, along with a brief
explanation of how their game satisfied each condition. One main consideration was that there
are a finite number of transitions. Consider this example which has at most 1 transition:
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1 point was taken off if the explanation was incorrect or not coherent.

Most teams that did not earn these 2 points drew one-player-games suggesting an infinitely long
path to a state so, (sometimes labeled s,,). This means that their game is not terminating as there
exists an infinite sequence of moves. Teams that suggested this were given 0 points. Examples of
0-point solutions are below.

Si = {Si+1} fOl“ 7 Z 0

However, teams were given 2 points if they suggested an end Sj, defined transitions working
backward, and had no state going into the beginning of the sequence (for example S, 11 = {S,}
for n > 1). An example is given below.

SZ‘+1 = {SZ} for ¢ Z 0

Problem 2. We will now prove the Diamond Lemma.

(a) (1 Point) Prove that if a terminating one-player game is confluent, then it satisfies the diamond
condition.

(b) (6 Points) Prove that if a terminating one-player game satisfies the diamond condition, then it is
confluent.

Solution:

(a) Suppose that S is a terminating confluent one-player game. Let s; — s2, s3 be an arbitrary branch
in S. Since S is terminating and confluent, there exists a terminal state s4 such that every sequence
of moves starting at s, ends at s4. Since so and s3 are both children of s, every sequence of moves
starting at either so or s3 also ends at s4. Specifically, such sequences exist because otherwise, a
sequence starting at so or s3 would have to terminate at some state other than s4, a contradiction.

(b) One possible proof strategy is to use induction. We will use contradiction instead. Suppose that
S is a terminating one-player game that satisfies the diamond condition. Suppose for the sake of
contradiction that S is non-confluent. Let us call states that break the confluent condition bad
(i.e. states that can reach two or more different terminal states). Let us call all other states good
(i.e. states that can reach exactly one terminal state). Since S is non-confluent, there exists at
least one bad state in S. Starting at this bad state, make moves to other bad states until it is
impossible to do so (until all children states are good). This process always terminates because S
is terminating and all terminal states are by definition good states. Call this final bad state sg.
Since sg is bad, there exists two different terminal states s3 and s, that are reachable from sg.
Let s; and s be the direct children of sy on the paths to s3 and s4, respectively. Since sy has
only good children, s; and sy are good states. By the diamond condition, there exists a terminal
state s; that is reachable from both s; and ss. Since s7 is good, it can reach exactly 1 terminal
state, but s; can reach both s3 and s5, so s3 must be the same state as s5. Since sg is good, it
can reach exactly 1 terminal state, but so can reach both s4 and ss, so s3 must be the same state
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as s4. Therefore, s3 must be the same state as s4. But this is a contradiction since s3 and s4 were
two different terminal states. Therefore, S must be confluent.

Problem 3. We will now prove the validity of Bubble Sort, a sorting algorithm used to sort a list of
numbers. The Bubble Sort one-player game is defined such that a state is any finite ordered sequence of
unique real numbers. Given a state (z1, 9, ..., k), a move consists of choosing any i between 1 and k — 1,
inclusive, such that x; > x;11 and swapping the positions of z; and x;;1. In other words we move from the
state (21,...,2;, Tiy1,...,2) to the state (z1,...,2iy1, 24, ..., o). The claim is that given a starting state
(21,29, ...,x), no matter which sequence of swaps are chosen, the result will be the terminal state with the
numbers in (1, 3, ..., 2x) sorted in increasing order. Furthermore, the number of swaps is also determined
by the starting state.

(a) (1 Point) Starting with the state (5,6,2,7,1/2), perform Bubble Sort two different ways and confirm
that the number of swaps is the same for both.

(b) (2 Points) Prove that the Bubble Sort one-player game is terminating.
(c¢) (3 Points) Prove that the Bubble Sort one-player game satisfies the diamond condition.

(d) (1 Point) Applying the Diamond Lemma, we now know that the Bubble Sort one-player game is
confluent. In other words, for all starting states (z1,z2,...,2k), there is a unique corresponding
terminal state. Explain why this corresponding terminal state must be the numbers in (z1, 22, ..., zx)
sorted in increasing order.

(e) (2 Points) Prove that given a starting state (21, z2,...,2x), the number of moves to reach the terminal
state is always the same and explicitly state what this number is in terms of the starting state. This
will conclude the proof of the validity of Bubble Sort.

Solution:

(a) There are many different ways to perform Bubble sort. One of them is:
(5,6,2,m,V2) = (5,6,2,V/2,7) = (5,6,v2,2,7) = (5,V/2,6,2,7) = (v/2,5,6,2,7)

— (v/2,5,2,6,7) — (v/2,2,5,6,7) = (v/2,2,5,7,6) = (V2,2,7,5,6)
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Another one is:

(5,6,2,7,V2) = (5,2,6,7m,V2) — (5,2,m,6,V2) = (5,2,m,V2,6) = (2,5, 7,V2,6)

—(2,7,5,V2,6) = (2,7,V2,5,6) = (2,V2,7,5,6) = (V2,2,7,5,6)

All sequences of swaps with the given starting state take exactly 8 swaps/moves to reach the
terminal state. Alternatively, stating 9 states rather than 8 swaps was also accepted.

(b) Note that for all starting states, the number of pairs of indices ¢, j with ¢ < j and x; > z; (these
are called inversions) is finite since the number of total pairs ¢, j with i < j is finite. Every swap
removes exactly one inversion and when there are no more inversions, no more swaps are possible,
S0 a sequence of swaps must terminate.

(c) There are two cases. First, let (z1,...,2, Zit1,...,2j,Zj41,...,Tx) be an arbitrary state with
x; > Ti41 and x; > w;41. We must prove that there is a sequence of moves starting at
(@1, s Tit1,Ti - .., T4, Tj11,. .., 2) and a sequence of moves starting at
(1,...,%i, Tit1, .-, Tj41, L5, - - ., k) that end at the same state. We do so as follows:
(xl,...,:ciﬂ,:ci ...71'j,$j+1,...,$k) — (xl,...,l'i+1,1'i ...,l’jJrl,I'j,...,LEk)
and
(.’L‘h. sy Lgy Ll e v oy Ljg1y Ljy e v s ,ZCk;) — (,CCl, ey T 1, Lo ey L1, Ly e s ,,CCk).

Now, let (z1,...,%;, Ti+1, Tit2,-..,Tk) be an arbitrary state with x; > x; 41 > z;y2. We must
prove that there is a sequence of moves starting at (xl, e T 1, T, Ty, 7mk) and a sequence
of moves starting at (z1,...,%;, Tit2, Tit1,- .., Tx) that end at the same state. We do so as follows:
(.1?1, ey T 15, L L 25 - - - ,Z‘k) — (Z‘l, ey L1, T4 25, Ly - e - ,.’L‘k) — (.’L‘l, ey T4 2, Tk 15 Ly - - - ,.’L‘k)
and

(1‘17 s Ly LG 2, L1y e e ey (ka) — (2131, R F T, IO o I T 7I’k) — (1’1, e T2, T 15 Ly e - - ,:ck).
An alternative solution is to prove confluence directly and apply Problem (2a) to get the diamond
condition.

(d) Suppose for the sake of contradiction that there is a terminal state (x1,xo,...,x) that is not

sorted in increasing order. Then, there exists ¢ such that x; > z;1. However, since the numbers
are by definition unique, we have x; > x;41. Then, these two numbers can be swapped, meaning
the state is not terminal, so we arrive at a contradiction.

(e) We will build on the idea from part (b). Since every swap removes exactly one inversion, and the
game terminates exactly when the number of inversions reaches zero, the number of swaps in a
sequence of moves beginning at the same starting state and ending at a terminal state is exactly
equal to the number of inversions in the starting state. Therefore, the total number of swaps will
always be the same.

Problem 4. We will now prove the validity of the Fuclidean Algorithm, an algorithm used to find the
greatest common divisor of a set of positive integers. The Euclidean one-player game is defined such that

a state in the game is any finite set of positive integers. Given a state {ni,...,nx}, a move in this game
consists of choosing a pair n; and n; with n; < n; and subtracting n; from n;. In other words, we move
from the state {n1,...,ng} = {n1,...,n,...,nj,...,nx} to the state {n1,...,n;,...,n; —n;,...,ng}. For

example, starting at the state {2,4, 7}, we may move to any one of the following three states: {2,4 —2,7} =
{2,2,7} = {2,7}, {2,4,7 - 2} = {2,4,5}, and {2,4,7 — 4} = {2,4,3} = {2,3,4}. We claim that given a
starting set of positive integers {ny,na,...,n}, no matter which sequence of moves are chosen, we will end
up with the singleton set {g}, where g = ged(ny,na, ..., ng).

(a) (1 Point) Perform the Euclidean Algorithm twice starting with the set {20, 30, 40,55} using two dif-
ferent sequences of moves of your choice and verify that, in both cases, the result is the singleton set
{gcd (20, 30,40,55)}.
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(b) (2 Points) Prove that the Euclidean one-player game is terminating.

(¢) (4 Points) Prove that the Euclidean one-player game satisfies the diamond condition.

(d) (2 Points) Applying the Diamond Lemma, we now know that the Euclidean one-player game is conflu-

ent. In other words, for all starting states {ni,no,..

.,ng}, there is a unique corresponding terminal

state. Prove that this corresponding terminal state must equal {ged(ni,na,...,nk)}. This will con-
clude the proof of the validity of the Euclidean Algorithm.

Solution:

(a)

There are many ways to perform the Euclidean Algorithm. One of them is:

{20, 30,40, 55} — {20, 30,40, 15} — {20, 30, 10,15} — {20,10,10,15} = {20,10,15} — {5,10,15}
— {5,10,5} = {5,10} — {5,5} = {6} = {gcd(20, 30,40, 55)}

Another one is:

{20, 30,40, 55} — {20, 30,40, 15} — {5, 30,40,15} — {5,30,10,15} — {5,15,10,15} = {5,10,15}
— {5,10,5} = {5,10} — {5,5} = {6} = {gcd(20, 30,40, 55)}

Note that the sum of the elements in any state is always positive, finite, and can only decrease
after each move since we only ever subtract positive integers. Therefore, the game must terminate.
Taking the first example from the solution for part (a), the sum progresses as follows: 145 —
105 — 75 — 45 — 30 — 20 — 15 — 5.

To show that the diamond condition holds, we must handle several cases. Without loss of generality
we will assume each state only has the elements relevant for the moves from the initial state we
will be making.

e Let state s := {a,b,c,d} where a < b and ¢ < d. Consider the following two states, to which
we can move from s: s’ :={a,b —a,c¢,d} and s” := {a,b,¢,d — c¢}. From both s’ and s, we
can get to s :={a,b—a,c,d — c}.

e Let state s := {a,b,c} where a < b < ¢. Consider the following two states, to which we can
move to from s: s’ := {a,b—a,c} and s” := {a,b,c—a}. From both s’ and s”, we can get to
s :={a,b—a,c—a}.

e Let state s := {a,b,c} where a < b < ¢. Consider the following two states, to which we can
move to from s: s’ := {a,b—a,c} and s” := {a,b, c—b}. We then have s’ — {a,b—a,c—b+a} —
{a,b—a,c—b} =: " and s — s".

e Let state s := {a,b,c} where a < b < ¢. Consider the following two states, to which we can
move to from s: s’ := {a,b,c—a} and " := {a,b,c—b}. We then have s’ — {a,b—a,c—a} —
{a,b—a,c—b} =: " and s — .

These cases are exhaustive and thus prove that the Euclidean one-player game satisfies the diamond
condition.

We first prove that the terminal state has exactly one element. The terminal state cannot have
more than one element because if it did, then we could subtract one element from the other,
contradicting the fact that the state is terminal. The terminal state cannot be empty because each
move in the Euclidean one-player game reduces the size of the set by at most one, and no more
moves can be made after the set reaches one element. Therefore, the terminal state must have
exactly one element. Next, we note that moves in the Euclidean one-player game do not change
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the gecd of the set. This is because if n; and n; are divisible by g with n; < n;, then we may
express n; = m;g and n; = m;g, so we have n; —n; = m;g—m;g = g(m; —m;), which is divisible
by g. Clearly, the ged also may not increase. Therefore, the single element in the terminal state is
the ged of the elements of the original set.

Problem 5. So far, we have only defined confluence for terminating games. Now, we will define it in general.
We say a one-player game is confluent if choosing a starting state either forces the player to play an infinite
game (they can never reach a terminal state no matter what sequence of moves they choose) or determines
a unique terminal state that the player must end up reaching in a finite number of moves no matter what
sequence of moves they choose. We will also define a stronger version of the diamond condition. We say a
one-player game satisfies the extended diamond condition if whenever there is a state s such that there exists
a choice of two states s’ and s” that the player can move to from s, then there also exists a fourth state s”’
such that there exists a sequence of moves from s’ to s” as well as a sequence of moves from s” to s such
that the two sequences are the same length.

(a) (2 Points) Give an example of a non-terminating one-player game that satisfies the regular diamond
condition but is not confluent. Explain why your example does not satisfy the extended diamond
condition.

(b) (8 Points) Prove that a one-player game that satisfies the extended diamond condition is confluent.

Solution:

(a) Consider the following game:

This satisfies the diamond condition but not the extended diamond condition because the branch
s1 — S2, S3 converges to ss but the two sequences are not the same length (and similarly for the
branch ss — s1, S3).

(b) Suppose for the sake of contradiction that S is a one-player game that satisfies the extended
diamond condition but is not confluent. There are two mutually disjoint cases:

(1) There exists a state that is able to reach two or more different terminal states in a finite number
of moves.

(2) There exists a state that is able to reach exactly one terminal state in a finite number of moves
but also has an infinite sequence of moves starting at that state.

A contradiction arises from case (1) by the same logic as problem (2b) (but do consider why it is
okay that S is not necessarily terminating, unlike in problem (2b)). Then, we only need to deal
with case (2).

Supposed case (2) is true. Let s be a state that is able to reach exactly one terminal state in a
finite number of moves but also has an infinite sequence of moves starting at that state. Let sg
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be the unique terminal state. We will label all of the states that are able to reach sg in a finite
number of moves as follows: for any state s’ that is able to reach sg in a finite number of moves,
if n is the shortest sequence of moves from s’ to sg, then we will label s’ as order n. We will say
that all other states in S have order co. Note that sg is the unique state of order 0. Also, note
that s is able to reach sg in a finite number of moves, so it has a label. Then, we will N be the
order of s.

Define a complete sequence of moves as a sequence of moves that ends at a terminal state or is of
infinite length (that is, a sequence of moves where we keep making moves until we are unable to).
We now make the following claim:

Claim: For all non-negative integers n, if a state s’ is of order n, then all complete
sequences of moves starting at s’ must end at sy in exactly n moves.

Note that if we can prove this claim, then a contradiction immediately follows since s is of order
N, but there is also an infinite sequence of moves beginning at s.

We will prove the claim using induction.
Base case: n = 0.

If s’ is a state of order 0, then s’ must be equal to the terminal state sg. Therefore, the only
complete sequence of moves beginning at s’ is the empty sequence, which has length 0 and ends
at sg, so the claim is true.

Inductive step:

Suppose the claim is true for n = k. Let s’ be any state of order k+1. Then, there exists a complete
sequence of moves of length k + 1 beginning at s’ and ending at so. Call this sequence P;. Let
s1 be the first state after s’ along P;. Then, s; must be of order k. Now, consider any complete
sequence of moves P, beginning at s’. We must show that P, ends at sq in exactly k+1 moves. Let
s9 be the first state after s’ along P,. Note that sy is of order at least k. By the extended diamond
condition, there exists two paths P and Pj beginning at s; and sg, respectively, such that P and
Pj both end at some state s3 and are of the same length [. Let P3 be any complete sequence of
moves beginning at s3. Let I3 be the length of P5. Consider the sequence P|+ P3, where + denotes
concatenation. Note that P 4+ P; is a complete sequence. By the inductive hypothesis, since s is
of order k, we have that P| + P; must terminate at so in exactly k& moves. Therefore, [ + I3 = k.
Then, Pj 4+ P3 must also terminate at s in exactly k moves, so sy is of order k. Applying the
inductive hypothesis again, since P, is a complete sequence of moves, and the second state of P»
is 89, which we have just shown has order k, we have that P, must terminate at sy in exactly k+ 1
moves.
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